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ABSTRACT

The behavior of a model of high-strength concrete consisting of

nine coarse aggregate circular inclusions in a square mortar matrix is

studied under biaxial compressive loads. Constitutive equations are

developed following the theory of plasticity in order to describe the

behavior of mortar in biaxial compression. The bond between mortar and

aggregates is simulated by an interface element. A comparison of

analytical and experimental results shows good agreement.
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CHAPTE 1

INTRODUCTION

This present work is part of a study of the behavior of

high-strength concrete under monotonic biaxial compressive loading.

A model of concrete, consisting of a square mortar plate with nine

coarse aggregate circular inclusions (see Fig. 2.1), is analyzed

using the Finite Element Method. The analytical results are then

compared with results of experimental tests of the same model.

The analysis takes into account the nonlinear behavior of the

mortar using the constitutive equations proposed in Ref. 1. These

constitutive equations have proved adequate for the prediction of

the behavior of concrete under biaxial states of stress.

The significance of the bond between the coarse aggregate and

the mortar is also studied using an interface element developed in

this work. Relative displacement of the two materials occurs if the

strength of the bond is exceeded.

Chapter 2 gives a brief account of the behavior of high-

strength concrete and presents a comparison with normal-strength con-

crete. The properties of the materials used in the analysis are also

presented. The constitutive equations used for the mortar are

described in detail in Chapter 3 and the linear and nonlinear finite

element analysis of the concrete model are developed in Chapter 4.

Chapter 5 shows the modeling of the interface between the mortar and

1
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2

the coarse aggregate and the bond properties between the two mater-

ials. Chapter 6 gives the analytical results and compares them with

experimental ones. Finally, some conclusions about the important

factors affecting the stiffness and strength of the concrete model

are listed in Chapter 7.

I



C H A P T E R 2

HIGH-STRENGTH CONCRETE

2.1 Introduction

The concrete model shown in Fig. 2.1 was first proposed in

Ref. 2 for the study of the behavior of normal-strength concrete

subjected to biaxial loading. In the present work, the same model

is used to study the behavior of high-strength concrete under biaxial

loads. Thus, this chapter gives a brief presentation of applications

and properties of high-strength concrete and summarizes the most

important differences in behavior between high-strength concrete and

normal-strength concrete. The properties of the component materials

in the concrete model are also presented.

2.2 Applications of High-Strength Concrete

In recent years, efforts have been made to improve the com-

pressive strength of concrete. Nowadays, high-strength concrete is

o becoming increasingly common. Among other applications, it has been

used in high-rise buildings where oversized columns can be avoided

in the lower floors, or in prestressed flexural members permitting

larger values of span-to-depth ratio. It also has great potential

of use in structures in which the concrete is subjected to a biaxial

state of stress such as large shells, containment vessels and tunnels.

3
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2.3 Properties of High-Strength Concrete

2.3.1 Uniaxial Compressive Strength. Although there is nowe l

defined boundary between normal-strength and high-strength con-

crete, some authors (see Ref. 3) classify arbitrarily concrete with

a specified cylinder compressive strength of at least 6,000 psi as

being high-strength concrete. Concretes with specified cylinder

compressive strength in the range of 8,000 to 10,000 psi have been

used successfully with conventional technology and materials but with

careful selection, proportioning and quality control. In this study,

the uniaxial compressive strength of the concrete model ranged between

6,000 and 8,000 psi.

2.3.2 Stress-Strain Relations. Plain concrete has some

amount of ductility. This ductility, however, decreases with increas-

ing concrete strength. The stress-strain relation up to ultimate

strength becomes almost a straight line as the concrete strength

increases (see Fig. 2.2 and Ref. 3). Note that there is a descending

branch in each curve after the maximum stress has been reached. Also,

the maximum strain at failure in compression is lower at higher con-

crete strengths. The maximum ultimate strain may be below 0.003 for

higher-strength concretes. As it may be seen in Fig. 2.2, the modulus

of elasticity is greater for higher strength concrete.

2.3.3 Microcracking. The differences in behavior between

high-strength and normal-strength concrete as shown in Fig. 2.2 may

be explained by differences in microcracking. For higher-strength

concretes there is less cracking at the interface between the aggregate
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Fig. 2.2 Stress-strain curves for concrete (Ref. 3)

and the mortar than for lower-strength concretes and the stress-

strength ratio at which microcracks begin to form continuous crack

patterns is higher. Therefore, the stress-strain curve is steeper

and closely linear up to a higher stress-strength ratio (see Ref. 4),

and the number of continuous crack paths is smaller for higher-strength

w!

concrete resulting in a decrease in the redundancy present in the

material. This is an explanation for its lack of ductility.

2.3.4 Failure Mode. High-strength concrete behaves more

like a homogenous material than normal-strength concrete and therefore

their failure modes in uniaxial compression are different. The frac-

ture surface of normal-strength concrete generally follows the con-

tour of the coarse aggregate surface in inclined planes forming a

cone of rupture. In high-strength concrete, failure occurs in a plane

parallel to the applied load and passing through the aggregate and

the mortar (see Ref. 4).

wI

0 0 .02.03 .0
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2.4 Component Materials Used in the Concrete Model

Typical stress-strain curves for the mortar and the coarse

aggregate used in the concrete model are shown in Fig. 2.3. As it

may be seen, the coarse aggregate behaves almost linearly up to

ultimate strength and the mortar shows some nonlinearities for loads

higher than approximately 40 percent of ultimate strength. Thus,

in this study, the coarse aggregate will be assumed to be elastic and

the nonlinear behavior of mortar will be taken into account.

The coarse aggregate and the mortar used in this study were

obtained, respectively, from limestone rock and from a mix of natural

sand and type I cement (w/c = 0.35, s/c = 2.0). The elastic proper-

ties of the two materials obtained from the average of three tests

on cylinder specimens are presented in Table 2.1.

TABLE 2.1 Elastic Properties of the Mortar and the Coarse Aggregate

Material Coarse
Property Aggregate Mortar

Compressive
Strength (psi) 12,850 10,970

Tensile
Strength (psi) --- 1,029

Modulus of
Elasticity (psi) 4.49 x 106  6.74 x 106

Poisson's
Ratio 0.058 0.25
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CHAPTER 3

DESCRIPTION OF A CONSTITUTIVE MODEL

3.1 Introduction

The behavior of the coarse aggregate and the mortar under

short-term monothonic compression was discussed in detail in Chapter a
In uniaxial compression the stress-strain curve for the mortar may be

assumed linear for levels of load up to 40-50 percent of ultimate

strength. Beyond this point, inelastic behavior is clearly obtained

and must be considered in the analysis.

In this chapter a model is presented applicable to the descrip-

tion of the behavior of the mortar under multiaxial states of stress.

The model parameters are estimated from experimental results. As

outlined below, the development of the model follows the formalism

of the classical theory of plasticity. The model was first proposed

in Ref. 1 in which details may be found.

3.2 Description of the Model

Following the theory of plasticity, the increment of strain

d~ij is taken to be the sum of an increment of strain resulting from

elastic behavior dEij and an increment of strain resulting from inel-

astic (plastic)behavior dj.

di = dE:j + dci (3.1)

9
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Assuming that the elasticity of the material is isotropic, the
e

elastic increment of strain d Eij is given by:

e e

dL i = e dakz (3.2)

where C ek is the isotropic elastic compliance tensor and is given

by:

6 6 61 (3.3)
Cijkz - 6ik 6jz + (1 K  6 G )6ij k]

(Indicial notation is conveniently used. Indices assume the values

1, 2, 3. The Kronecker delta 6ij is defined as 6ij = 0, if i j

and 1ij = 1, if i = j). K and G are the elastic bulk and shear

moduli defined as:

E

3 (1 - 2 u) (34)

G = 2 (E + u) (3.5)

E and u are the Young's modulus and the Poisson's ratio respectively.

An alternative form of Eq. (3.2) is:

I! d S..

d ee - (3.6a)2 G
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de - d (3.6b)

dee c d e e + d de6. (3.7)
ii ii 3 i

d aij d Sij + d o 6ij (3.8)

ee e

d e.. is the elastic increment of deviatoric strain. 
d Ee = d E ii
1i is h

is the elastic increment of volumetric strain, do = d o is the

increment of hydrostatic stress and d Sij is the increment of devia-

toric stress.

An important assumption in the calculation of the plastic incre-

ment of strain d E9 following the theory of plasticity, is the exis-
ij1

tence of a yield function. In the present model, the arguments of the

yield function, F, are the state of stress, oij, and a parameter, k,

that reflects the history of plastic deformation:

F (ij,k) = 0. (3.9)

In the space of stresses oij, the yield function may be repre-

sented by a surface. For plastic deformation to occur the material must

be subjected to a state of stress that lies on this surface, F = 0

(yield surface). If the state of stress is in the interior of the

convex region bounded by the surface, F < 0, only elastic deformation

occurs. The value of the parameter k changes so that the state of

stress satisfies F 0 during plastic deformation. Thus, the region
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defined by F > 0 is the set of states of stress which cannot be ob-

tained without further plastic deformation. In this way, an increment

of stress doij can be considered as loadinq, if it is directed towards

the exterior of the convex region bounded by the yield surface, as

unloading if it is directed towards the interior of the convex region

and as neutral loading, if it is tangent to the yield surface:

1) Loading:

F (oij,k) = 0 and a do. > 0 (3.10a)
13ij

2) Unloading:

F (a..,k) = 0 and do.. < 0 (3.10b)
F 3 10

3) Neutral Loading:
aF

F (aij,k) = 0 and a do. =01- o 0 (3.10c)

(It is assumed that F is continuously differentiable.) Plastic deform- I
ation occurs only during loading. The yield function F is assumed iso-

tropic, involving invariants of the stress tensor oij' namely, the

hydrostatic stress (mean normal stress)

C = -1 aii

and the shearing stress intensity

7 [I Sij Sij 1/

2
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2 2 21/2
176-[(cjI  '2) + (02 03) + (03 - 01) 2]

(S1 , - 02, 03 are the principal values of the stress

tensor.) It is taken of the general form

F (a, T, k) = f (a, T) - k (3.11)

Upon loading, F (aij,k) = 0 and F ( ij + d oij, k + d k) = 0.

Thus,

d F d F 3f

d -F -do.ij + d k d o ij - d k = 0

therefore

dk- i d o.. (3.12)

The plastic increment of strain d c.P is written as13

d = d e + d c P 6. (3.13)
13 1 3 13

with d eP (the plastic increment of deviatoric strain) and d EP (theij

plastic increment of volumetric strain) given by:

d eP - d k (3.14a)
ij =H 2T
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d p - 1 d k B (3. 14b)

with H and 3, in general, functions of o and T

In order to describe the physical meaning of H and , it is

convenient to define the intensity of the increment of inelastic

shear distortion d ep as:

d eD  = [2 d ep d ep ] 1/2 (3.15)

Using Eq. (3.14a), it may be seen that, during loading, H

must be positive, since d k > 0, T > 0 and d e?. is taken in the same

direction as Sij. It is easily obtained that

2

SinceT2= I Sk Skz, it follows that

and

[2 d e d e ] =1d2_dk

Finally,

__ _ _ _ _ _ _ _ _



dHe dk (3.16)

Since d k may be understood as an increment of loading and dep is the

intensity of the increment of plastic shear distortion, H may be

interpreted as a plastic shear modulus.

Combining equations (3.14b) and (3.16), it follows that

d cP = Bd ep. (3.17)

Thus B may be understood as the ratio of inelastic volumetric deforma-

tion to inelastic shear deformation. It is referred to as the inelas-

tic dilatancy factor. Since d ep > 0, < 0 means inelastic contraction

and >0 means inelastic dilatancy.

The yield function F must exhibit what is sometimes referred

to as pressure sensitivity of inelastic behavior. Thus, it is assumed

that as magnitude of the hydrostatic stress ioy increases, the shearing

stress intensity for which inelastic behavior may occur, also increases.

A typical yield surface in a-T space is shown in Fig. 3.1. The para-

meter k is also known as the hardening parameter and, if the state of

stress is on the yield surface, it is related to a and T through the

equation F = 0 (Eq. (3.11)).

Thus, H and may be taken as functions of (a,T), (a, k) or

(T, k) equivalently. However, since ultimate strength of the material

is obtained when k reaches a limit value, it is more convenient to take
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T

j .. f (aT) - k o

Fig. 3.1. Typical yield surface in a - T space

H and B as functions of (T,k) or (o,k) rather than (o,T) since k

provides a measure of the proximity of the state of the material to

the ultimate strength.

3.3 Constitutive Equations

Eqs. (3.14) may be rewritten as:

d di P d u (3.18)
Sikz k.
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The plastic compliance tensor C ijk is obtained using Eq. (3.12):

d k =[ dokl]

=[D f d Sk + d o]

[ f Skz d + d o
- T 2 T SkZ

Since

Skz k -" kz

and

d Ski = dokz - do 6kz

it is seen that

'd T T d k +T- d

However,

f Skz
-T 2 Td k = 0

and

.11
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d o= d 6 k

therefore,

k f Sk + 1 3 f  6 k dOk .d- k 3 a k

It follow; from Eqs. (3.13) and (3.14) that:

C P 1 !.a 1 1 [ fSki 1 f (.9
Cijk= -R2 T + - 6 6ij2T + . 6[T (3.19)

In general, C Cpj

ijkQ. kzij*

Finally, the incremental constitutive equations corresponding

to loading may be written as

with dcij = Cijkz dckZ  (3.20)

ijkz = Cijkz + ijk.

Again, in general, CijkZ $ Ckiij.

In the cases of unloading and neutral loading, the compliance tensor

C is equal to the elastic compliance tensor Ce and the increment
ijki iJkai

of strain d cij is given by:
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d ij = ciejk d k (3.21)

3.4 Parameter Estimation

The yield function F has been taken of the general form:

F (a, T, k) - f (a, T) - k (3.11)

A simple special case of Eq. (3.11) is:

F (a, T, k) - A1a + A2T + A3 - k = 0

Using the following conditions,

1) o1 = - If c l ; G2 = 03 - 0 and k = 1

2) 01 = 02 -1.16 If'cl; 03 = 0 and k = 1

3) 01 = -0.40 If'I ; 02 = a = 0 and k = 0,

the values of A1, A2 and A3 may be found. Thus

o T

F(, T, k) 0.69 a + 3.285 TT-.0667 - k

(3.22)

(f' is the strength of the material in uniaxial compression.)c
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Conditions 1, 2 and 3 representrespectively,

1) ultimate strength in uniaxial compression.

2) ultimate strength in equal biaxial compression. (The

factor 1.16 allows for the increase in strength under combined com-

pressive stresses.)

3) Initial yielding in uniaxial compression.

The parameter k can assume values between 0 (initial yielding)

and 1 (ultimate strength). Thus, it can be used as an indicator of

the proximity of the yield surface to the material ultimate strength.

A graphical representation of the yield function (3.22) in a - 02

space and in a - T space is shown in Figs. 3.2 and 3.3 respectively.

The plastic shear modulus H will be taken to be a function of

the magnitude of the hydrostatic stress lal and the hardening parameter

k. As shown in Figs. 3.1 and 3.3, the yield function used in this

study is such that the shearing stress intensity T increases as the

magnitude of the hydrostatic stress Iol increases. Since more inelas-

tic shear deformation is obtained under higher shear loading (higher

T), is follows that H must be a decreasing function of T and hence of

Using Eq. (3.16) and calculating the values of d k and dep from

stress-strain curves measured in uniaxial compression tests, the

values of H shown in Table 3.1 were obtained. Within each interval,

H is assumed to vary as follows:

1H a+bk
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1.0 0.4

= L 0.00.

1CK 0.4

1.0 1.0

0 2

Fig. 3.2 Yield surfaces in a 1  a a2 space

-------- 1C 1. 0

------ C =0.05

0.8

0.1

1.0 2.0T
C

Fig. 3.3 Yield surfaces in a-T space
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Table 3.1 Relationship between k and H in uniaxial compression

k H (psi)

0 16,000

0.35 4,870

0.50 2,800

0.70 1,600

1.00 575

The values of a and b may be calculated for each interval yielding

the expressions in Table 3.2.

Table 3.2 Expressions for H as a function of k in
uniaxial compression.

k H (psi) I
0 f k < 0.35 H = 1/(4.081 x 10- 4k + 6.250 x 10

- ) 

0.35 < k < 0.50 H = 1/(1.012 x 10-3k - 1.489 x l0- )

0.50 - k f 0.70 H = 1/(1.339 x 10 3k - 3.125 x 10- 4 )

0.70 < k f 1.00 H = 1/(3.714 x 10-
3k - 1.975 x 10-3)

In uniaxial compression ( O1 < 0, 02 03 = 0):

1

and
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1 ioi

Using the yield function given by Eq. (3.22), it is seen that, beyond

the initial yielding,

lull= 2 +53 k Ifl

and therefore

= I2+3k

c 15

or

2+3 k 15.

In order to generalize the results given in Table 3.2 and obtain

expressions for H valid for any state of stress, the values of H in

uniaxial compression were divided by 15 and multiplied by

2+3k

Thus, the expressions for H shown in Table 3.3 were determined.
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Table 3.3 Expressions for H under multiaxial states
of stress (C = (2 + 3 k)/)a /f~I).

k H (psi)

0 % k 0.35 H = C/(6.122 x 10 3k + 9.375 x 10-4)

0.35 5 k 0.50 H = C/(1.518 x 10-2k - 2.234 x 10-3)

0.505: k 0.70 H = C/(2.009 x 10-2k - 4.688 x 10-3)

0.705: k 5:1.0 H = C/(5.571 x 10- 2k - 2.963 x 10-2)

The inelastic dilatancy factor a will be taken to be a function

of the parameter k only. A more elaborate analysis could include the

effect of the hydrostatic stress c in the expressions for S.

Using Eq. (3.17) and calculating the value of dzp and dep from

stress-strain curves measured in uniaxial compression tests, the value

of S shown in Table 3.4 were obtained.

In order to check the accuracy of the expressions for H and B

shown in Tables 3.2 and 3.4 respectively, the stress-strain curve in

uniaxial compression used to obtain the two parameters was reproduced

and the comparison is shown in Fig. 3.4.
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Table 3.4 Relationship between k and 8 in uniaxial
compression.

k 8

0 -< k -< 0.135 8 = -49.60k + 2.92

0.135 < k -< 0.219 8 = 66.31k - 12.73

0.219 < k - 0.354 8 = -14.44k + 4.95

0.354 < k - 0.521 8 = - 3.05k + 0.92

0.521 - k 5 0.615 8 8.09k - 4.88

0.615 < k < 0.708 8 = -9.89k + 6.17

0.708 < k - 0.792 8 = 15.12k - 11.53

0.792 - k - 0.875 8 = -11.81k + 9.79

0.875 - k - 1.0 8 = 8.32k- 7.82

-1
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C)

Li)2C- I

--C. 2C -00 -0. C5 ,.

ST 9PN 1iC -2
Fig. 3.4 Stress-strain curves for mortar in uniaxial compression--

comparison between test results and the model.



CHAPTER 4

THE FINITE ELEMENT ANALYSIS OF THE CONCRETE MODEL

4.1 Introduction

The concrete model to be analyzed in this study is shown in

Figure 2.1. The coarse aggregate will be assumed to be elastic up

to ultimate strength since test results in uniaxial compression showed

that this is true to a very good approximation. Inelastic deformation

in the mortar will be taken into account using the constitutive model

described in Chapter 3.

As the model and the loading are symmetric about the two

orthogonal axes, it is necessary to analyze one quadrant only. A

discretization of this quadrant by finite elements is shown in Fig.

4.1. As it may be seen, a six-node element is used to represent the

coarse aggregate and an eight-node element is used to represent the

mortar.

The objective of this chapter is to describe the linear and

nonlinear finite element analysis of the concrete model.

4.2 Linear Analysis

This section describes the analysis of the concrete model

assuming both materials (aggregate and mortar) to be isotropic and

elastic. Section 4.3 will describe the nonlinear analysis, i.e., the

analysis accounting for the nonlinear behavior of the mortar.

27
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The linear analysis may be described briefly as follows:

Stepi . Given the elastic properties of the materials, a

relationship between nodal forces and nodal displacements for each

element is found:

Fi = Ki Ui

where

F1 = [X1' Y , y , '" X , Y 1TUi= i iiy Ti ~ :[,YIX2' 2' """ m' m

Ui  [U, v1, u2, v2, . . . um, vm
]T

The superscript T indicates that the transpose of the superscripted

matrix must be taken. X and Yj are the forces, in the x and y dir-

ections, respectively, applied at node j of element i. u. and v.

are the displacements, in the x and y directions, respectively, of node

j. m is the number of nodes of the element. Ki is the stiffness

matrix of element i.

Step 2. The element stiffness matrix K and the load vector

Fi are modified for the support conditions.

Step 3. A relationship between nodal forces and nodal dis-

placements for the structure is found, i.e., the structure stiffness

matrix is assembled from the element stiffness matrices:

F = KU

p.-.
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F= [XI' Y19 X2 Y29 . . . 9 Xp, Y pT

u = u1 , V, u 2 , v2  ... . u, Vp T

X. and Y are the forces, in x and y directions respectively, applied

at node j. p is the number of nodes in the structure. K is the

stiffness matrix of the structure.

Step 4. The system of equations for the displacements is solved

using Gauss elimination. Formally:

U: [K= 1 FF

Step 5. After the displacements are determined, it is possible

to find strains and, therefore, stresses at any point in the structure.

In each element, some points also used in the calculation of the element

stiffness matrix (integration points) are chosen.

4.2.1 Derivation of the Element Stiffness Matrix. The finite

elements used in this study are called isoparametric. The same inter-

polation functions used to relate the coordinates of any point, within

the element, to the coordinates of the element nodes are also used to

relate the displacements of any point, within the element, to the

displacements of the element nodes. Thus:

m
x =Z N x (4.1a)

j=1
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my = Z Nj yj (4.1b)

j=1

m
u = E Nj uj (4.2a)

j=1

m

v W m N. v (4.2b)
j=1 J

x, y are the coordinates of any point within the element. xj, yj are

the coordinates of node j. u, v, are the displacements of any point

within the element. uj, vj are the displacements of node j. N. is

the interpolation function corresponding to node j.

An interpolation function assumes a value equal to one when

evaluated at its corresponding node and a value equal to zero when

evaluated at any other node. For example, the interpolation functions

used for the eight-node element (see Fig. 4.2) are given by

N1 =l- /4(r + s + 1) (1 - s) (1 - r)

N2 = 1/4(r - s - I) (1- s) (I + r)

N3 = 1/4(r + s - 1) (1 + s) (1 + r)

N4 =-1/4(r - s + 1) (1 + s) (1- r)

N5 = 1/2(1 - s) (1 + r) (I - r)
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N6 = 1/2(1 - s) (1 + s) (1 + r)

N7 = 1/2(1 + s) (I + r) (1 - r)

N8 = 1/2(1 + s) (I - s) (I - r)

r, s being local coordinates as indicated in Fig. 4.2.

There is a one-to-one correspondence between points in the

square in Fig. 4.2 and the eight-node element shown in Fig. 4.1. It

is the interpolation used in Eqs. (4.1) and (4.2) that allows the use

of curved elements such as the ones shown in Fig. 4.1.

$I
C{-1.1) 7(0,1) 30I,1)

8(-1,o) 600

D(- -I5(0,-I) 2(I,-I)

Fig. 4.2 Local system of coordinates for the eight-node element.

If small displacements are assumed, the strains at any point

in the body are given by
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£ -u - v
x 3x' 1y ay

and

3u + _ (4.3)Yxy : y D x

and, using Eq. (4.2),

m 3 N. m 3Nj
Eu, = z jZ v.

j=1 x 1=j-1 3 >'

and

m -
a uj +

y [ Y 3

The partial derivatives of the interpolation functions with

respect to x and y may be calculated from

N aNj 3x JN. a y
a r a x ar a y ar

3 N. N. 3Dx + N 3y

3 s 3 x s y as

In matrix form
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x y1

r 3r 3r -- x 3 x

_ 3 J
_ Nj x 3 y N.J_

L s J s 3s J y L y

J is known as the Jacobian Matrix and can be derived as a function of

r and s using Eq. (4.1).

m aN. m IN.
z x. ---- - yj

j r j=1 r j

e (4.5)

m I N. m D N -E __j x. E y

j1 3s j=1 a s

Thus, given the coordinates r and s of a point in local coordinates,
3N. 3N. I

and can be found, for the corresponding point in the body:

3Nj 3N.
3x 3r

= [j]- 1

^1 (4.6)

3N. 3N.

3 y 3s

The relationship between the strains at any point in the body

and the nodal displacements may be written, in matrix form, as:
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= U (4.7)

where

C C T
= X [x ' t ' 'xy] T

U, = ul, V11 u21 v2, . .. ,m Vm1 T

aN 1  a N2  a Nm

x ax ax

a N1  a N2  . . . N
B 0 ay ay

a N1  a N1  N2  aN 2  . a Nm a Nm

ay Yx ay ax ay ax

After the strains, the stresses can be calculated (assuming a plane

state of stress with oz  = Txz = yz = 0) as

a 0 D (4.8)

where

= y xy

4.,
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1 v 0

E
D E 1 0

fl-11 1-V

0 0 2

The principle of minimum potential energy yields the stiff-

ness matrix of an element (for example, see Ref. 6):

Ki = f BT D B dv (4.9)
element-
volume

The integration in Eq. (4.9) is conveniently carried out

numerically. In this analysis, Gaussian integration is employed.

Nine integration points have been used for the eight-node elements

and seven integrations points for the six-node elements. The inte-

gration points in the eight-node element in local coordinates are

shown in Fig. 4.3.

The matrix multiplication in Eq. (4.9) may be organized as

follows:

Calling,

N N.
?x

3 N.
B o

a y a x

~N. ~N
£~~
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oo o
9 4 8

0 0
5 1 r 3
+-0.7446 -0.7446L

0 0 0
6 2 7

-I

Fig. 4.3 Integration points for the eight-node element
in local coordinates.

so that,

B = [ i §2' m

T T T T BT

and using Eq. (4.9):
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B TDB BTDB T .. BDB

BTD BT DB BTDB,2 -- 1 m.2 Z-2 Zmm

q
K E~ w (4.10)

B T DB B T DOB B TODB
-m M ~ 1 _m '--Z2 -in - -m

q being the number of integration points. The weight of integration

point Z is denoted by w .

The matrix in Eq. (4.10) is symmetric, if D is symmetric as

in Eq. (4.8).

4.2.2 Modification of the Element Stiffness Matrix for

Support Conditions. The stiffness matrix derived above relates the

forces at the nodes of an element to the corresponding displacements.

These displacements are the degrees of freedom. If a displacement

is prescribed, it is not considered a degree of freedom and the cor-

responding column and row in the stiffness matrix K are deleted after

the column multiplied by the prescribed value is subtracted from the

load vector. Thus, for example, if the displacement in the y-direction

of node 1, vI, is prescribed equal to 1, the element stiffness matrix

will be modified as follows:
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i k k k uX1 1,1 kl,2 kl,3 1i,4 . . .kl,2m 1

i k 2  k k k

1 2,1 k2 ,2 k2,3 k2,4  . ,2m 1

iX2 k3, 1 k 3,2 k 3,3 k 3,4 . ." k 3,2m u2

Y k k k k . .. k V

Y2 k4,1 k4,2 k4,3 k4,4 . . .k4,2m v2

LiXm i Lk2m,lk2m,2k2m,3k2m,4 k2m,2m VM

X1 - 1k,2 1 k1,1 kl,3 1l,4 . . . 1,2m Ul

iX2 - k3,2 31 ,1 k3,3 k3,4. k 3,2m 1

i Vl k3  k43  k . U 2
Y2 4,2 k4,1 4,3 k4,4 k4,2m 2

Y1 k k k k k v

L -M 2m,2V 1 k2 m, k2m, 3  k2 m,4  k2m,2m Vm

In this way, a support is introduced at node 1 in the y-

direction and the force Y becomes the reaction at this support.
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Another modification in the load vector and element stiff-

ness matrix must be introduced in this analysis to take into account

the fact that some degrees of freedom may be the same. For example,

if the load is applied to the specimen shown in Fig. 2.1 using rigid

platens, it is reasonable to assume equal displacements for all nodes

located along the contact edge of the specimen in the direction of

the applied load. Thus, all degrees of freedom can be condensed in a

single one since they are all the same. The process of condensation

may be described by the following example. Suppose that the degrees

of freedom v and v2 are the same and it is desired to condense them

in a single degree of freedom, say, vI. To accomplish this it is

necessary to make the following modifications in the element stiff-

ness matrix and load vector. The column and row corresponding to the

degree of freedom v2 must be added to the column and row corresponding

to the degree of freedom v1. The column and row corresponding to the

degree of freedom v2 is them deleted. Thus,

Xl klI  (k, 2+k 4) k, 3  . U

Y1 I2 (k2,1+k4 ,1) (k2,2+2k2,4 ) (k2 3 k4 3) . (k2,2 +k4 2  v

S3,1 (k3 2+3, 4) k3,3  3,2m u2

3 k5,1  (k5,2+k5 ,4) k5,3  • 5,2m u3

3 k6 ,1  (k6 ,2+k6,4) k6,3  6,2m 3

Yi
m k2m,1 (k k', 4) k2m,3  k2m,2m vm

.1 L
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Note that the remaining stiffness matrix is still symmetric, if the

original matrix is symmetric.

Since, sometimes, there are some degrees of freedom which are

the same but, in addition belong to different elements, a trick is

used to overcome the difficulty. A one-degree-of-freedom node number

is created in the program for each set of degrees of freedom to be

condensed. An element node number corresponds to a structure node

number. For example, the node number 1 of element 28, see Fig. 4.1,

corresponds to node number 87 in the structure. Thus, in the program,

the sets of degrees of freedom to be condensed are forced to correspond

to the created node number and, therefore, during the process of

assembly and solution of the system of equations, only one degree of

freedom will be processed.

4.2.3 Assembly and Solution of the Structure System of

Equations. The assembly and solution of the structure system of

equations is a straightforward process. A detailed description of

this process is not of interest in this study and therefore only a

brief presentation will be given here. (See Ref. 7 for more information).

The Frontal Solution Method is used. In this method the

assembly and Gauss elimination are performed at the same time, whereas

in the usual solution method the stiffness matrix for the structure

is first assembled and then Gauss elimination is carried out.

If, as elements are processed one after the other, a node

appears for the last time, the degrees of freedom associated with

the node may be eliminated and the corresponding equations are removed
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and saved. After the last element has been processed, back-substi-

tution yields the nodal displacements. Note that in the Frontal

Solution Method it is element numbering that is crucial and not node

numbering. The method is known to be more efficient than the more

common band solvers, if elements with midside nodes are used as in

the present analysis (see Ref. 7).

4.2.4 Calculation of Stresses and Strains in the Body. As

explained in section 4.2.1, if the nodal displacements of an element

are known, the strains and stresses at any point within the element

can be calculated using Eqs. (4.7) and (4.8) respectively. In this

study, the calculations are carried out at the integration points.

If the stresses at all integration points in the body do not

exceed the material elastic limits, the linear analysis is sufficient

to obtain the behavior of the concrete model. On the other hand, if,

at any integration point, the stresses exceed the material elastic

limits,a nonlinear analysis must be performed. This will be discussed

in Section 4.3.

4.2.5 Accuracy Test of the Linear Finite Element Analysis.

The problem depicted in Fig. 4.4 was considered in order to check the

accuracy of the linear finite element analysis. It involves a circular

inclusion in a matrix subjected to uniform tension in one direction.

An exact solution of this problem in the case in which tension is

applied at an infinite distance away from the inclusion (a. = -) is

available in the literature (see Refs. 8, 9). Details of the derivation

of the exact solution may be found in these references. The
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Fig. 4.4 A test in the elastic analysis.

displacements of points A and B were obtained from the exact solu-

tion and then using the linear finite element analysis. As it is

impossible to apply the tension at an infinite distance away from the

inclusion, several finite element analyses were performed for increas-

ing values of o (see Fig. 4.5). The results for two different values

of Poisson's ratio for the inclusion are shown in Table 4.1. Good

agreement between the results of the finite element analysis and the

exact solution may be observed as the value of a is increased. Thus,
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= 1.67

0.67

LII
= 3.33

FF

Fig. 4.5 Finite element meshes used in the test analyses.
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Table 4.1 Comparison between results of the finite element
analysis and the exact solution

E 1  8.4 x 106 psi E2 = 4.7 x 106 psi V2 = 0.20

= 0.06 EXACT SOL.

0.67 1.67 3.33

uA(in) 2.23 x 10-3  2.38 x 10- 3  2.46 x 10- 3  2.51 x 10- 3

vB(in) -0.18 x 10- -0.94 x 10- -1.41 x 10- -1.75 x

= 0.15 EXACT SOL.

CL0.67 1.67 3.33

UA(in) 2.40 x 10- 3  2.47 x 10- 3  2.52 x 10-3

VB(in) -2.73 x 10- 4  -3.16 x 10- 4  -3.45 x 10-4

the finite element meshes shown in Fig. 4.5 yield reasonably accurate

results.

4.3 Nonlinear Analysis

The nonlinear analysis is better understood by considering

a one-degree-of-freedom structure. Let P be the load applied to the

structure. Also let u be the degree o" freedom associated with P.

The inelastic behavior of this structure is shown in Fig. 4.6. Sup-

pose that for some value of the load P the corresponding displacement

u is known. It is desired to find the increment of displacement Ni
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P + ,P " A -7 r7;,FA " "
I I7

aAU 1

.. .. L- I I
I I

U u+Au U

Fig. 4.6 P vs. u diagram for a one-degree-of-freedom structure

associated with the increment of load AP. If, for any given displace-

ment, it is possible to find the corresponding load for structural

equilibrium and if the initial elastic stiffness K is known, the

problem may be solved iteratively as follows:

Step 1. Assuming that the structure is elastic, the

increment of displacement AuI associated with AP is found:

Aul A -P
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Step 2. For the increment of displacement AuI, the

corresponding increment of load AP1 for equilibrium is found:

Step 3. The residual increment of load (AP - AP) is applied,

assuming again elastic behavior, and the increment of displacement

A 2 is calculated:

u (AP - 6PI)
A 2  K

Now repeat steps 2 and 3 until convergence is obtained and the value
m

of AU = E Aui is determined, n being the number of iterations.
i=l

The procedure described above is usually referred to as the

"Constant Stiffness Method". It is used in a similar way in the non-

linear analysis of the concrete model shown in Fig. 2.1. Suppose that

for some load P on the model the nodal displacements U as well as the

stresses and strains a and c at all integration points are known. It

is desired to find the increments of nodal displacements AU and the

increments of stresses and strains Aa and AE corresponding to some

increment of load 6P. The problem is solved as follows:

Step 1. Assuming that the structure is elastic, a linear

analysis (as described in Section 4.2) is performed and the increments

of nodal displacements AUI associated with the load increment AP are

found:

A W-J"1 AP
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Step 2. For each element and at each integration point:

Using AU and Eq. (4.7) Ac is found. The increments of stresses

using the elastic material properties (Ale 1 - ' see Eq. (4.8)) are

calculated. Using the constitutive equations developed in Chapter 3,

the increments of stresses 6cI corresponding to AE, are evaluated. The

residual increments of stresses (Aole - Ac) are determined and then

for each element, the corresponding nodal residual forces are calcu-

lated. Applying the residual forces, another linear analysis is

performed and the increments of nodal displacements AU2 are found.

Repeat steps 1 and 2 until a convergence criterion is satisfied.

The increments of nodal displacements, the increments of

strains and the increments of stresses are given by:

' U A Ui

n

AU Z A

n
A- - A i
- i=l

n being the number of iterations.

4.3.1 Implementation of the Constitutive Model in the Non-

linear Analysis. As it may be concluded from the above description of

the nonlinear analysis, a very important part is the calculation of

the increments of the stresses on the material from the increments
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of the strains. The constitutive model described in Chapter 3 will

be used here to accomplish this task.

It is evident from the description of the constitutive model

that the behavior of the material deoends on the loading path. The

state of the material is defined by the stresses a (a plane state of

stress is considered so that 033 = T 23  31 = 0):

T

a = [a 11 , 22, T12] (4.11)

and the hardening parameter k. 011, a2 2 are the normal stresses and

'12 is the shear stress. The hydrostatic stress is

0 = ( +11 022) (4.12)

and the shearing stress intensity is given by

I 2] 1/2

T = 011 a22)2 + 112 0222 + 6 1 2  (4.13)

The assumed yield function F is

F (a, k) = f (a,T) - k. (4.14)

For the state of stress a, F (a, k) 0. The implementation

of the constitutive model in the program can be described as follows:

L
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First, elastic increments of stress are calculated from the

increments of strain Ac using Eq. (4.8):

,e [ Aall , A 2 2, A-[I e]

Second, the yield function F is calculated at the state of

stress a. If F (c, k) < 0, the behavior is elastic if the increments

of stress AMe is not large enough for a + Ace to be beyond the yield

surface, i.e., if F ( + Ae, k) < 0. Thus

SCe Ae (4.15)

Ce being the elastic compliance matrix (symmetric, 3 x 3) and

T

['111 '22'Y12

e = i ' A 22' '-Y123

(':11' 22 are the normal strains and Y12 is the shear strain.) The

matrix Ce is given by

I -v 0

ce = -I 1 0
E

0 0 2(1+,v
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(E and v are Young's modulus and Poisson's ratio respectively.)

The normal strain and the increment of normal strain in the out-of-

plane direction are given by

3= - V ( + E (4.16a)

(AE- + (4.16b)
33 1V 11 Ac22 )

Eq. (4.15) may be rewritten as

AGe = 0e z (4.17)

where De [Ce-i is the elastic rigidity matrix (symmetric, 3 x 3).

In the case that F (Z + A Me, k) > 0, the increments of stress

must be divided into two parts: one to bring the state of stress to

the yield surface (elastic behavior as described before) and the

remainder resulting in elastoplastic behavior as described below.

If F(Z, k) = 0 (the state of stress is on the yield surface),

the following cases are distinguished:

1) Loading:

a --T Ace>wt

with

I
L4
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F [ FF FF 
l T

a [ ac11' 3022' aTI12J

The constitutive equations are

AC = (Ce + Cp ) AG (4.18)

where Aa = [AG11, A22, ATI2
]T

are the increments of stress that correspond to AE. Cp is the two-

dimensional plastic compliance matrix (3x3 ) and Ce is, again, the

elastic compliance matrix. In order to calculate the plastic incre-

ment of normal strain in the out-of-plane direction, Ap 3, the neces-

sary entries in the three-dimensional plastic compliance matrix will

also be computed. Thus, with the notation

1 Si  I
A. = - + i = 1, 2, 3

2 si ](4.19a)
2

A. = - i =4
H 2 T I

[af S. 1 f1
Bi [a S + - - , i =1, 2, 3

, 2T 3 3Tf Si (4.19b)

B. = 2 , i =4
a T 2T
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(S 1 =o11 -0, S2 = '22 - a, S3 
= c33 -a, S4 

= T1 2 ; H and B are the

plastic shear modulus and the inelastic dilatancy factor respectively

as defined in Chapter 3.) The entries of the three-dimensional matrix

p may be written as (see Eq. (3.19)):

C? = A B., i, j = 1, 2, 3, 4. (4.20)i i •

This is a 4 x 4 matrix. Since Aa 3 is zero, the third column may be

deleted. Keeping rows 1, 2, 4 yields the two-dimensional plastic

compliance matrix in Eq. (4.18). Row 3 is used in order to calculate

the plastic increment of strain in the out-of-plane direction AEP"
33'

Eq. (4.18) may be rewritten as

a = Dep AE. (4.21)

where Dep = [Ce + CP] - I', is the elastoplastic rigidity matrix. In

this study, the matrix CP is not necessarily symmetric and, therefore,

the rigidity matrix Dep is also, in general not symmetric.

The increment of the hardening parameter k is obtained as

Ak F Ao. (4.22)

2) Unloading:

[ Fj T e 0.
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The behavior is elastic (Eq. (4.17)).

3) Neutral loading:

[ F] T ,e = 0.

Again, elastic behavior is obtained (Eq. (4.17)).

4.3.2 Calculation of Residual Forces from Residual Stresses.

After the residual stresses are calculated at each integration point,

the corresponding nodal residual forces for each element may be found

using the equation:

AF = Ki A.

Since

K = B dv, AE BAU' and
voT _T

Aa = 0 A c,

AFi  = 1T DB dv AUi = fT D B Ui dv
vol- vol

AFi  f BT Ao dv (4.23)
vol

where AF is the vector of nodal residual forces for element i and

Aa represents the residual stresses in the element. The integration
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is carried out numerically:

i q BT

AF = k BT Aoy (4.24)

A is the vector of residual stresses at integration point Z.

4.3.3 Convergence Criterion. In this study the convergence

test is based on a relative error estimate calculated from the nodal

displacements and increments of nodal displacements of the structure.

The ratio of the square root of the sum of the squares of the incre-

ments of the nodal displacements to the square root of the sum of the

squares of the nodal displacements in an iteration is obtained. If

it is less than a specified tolerance then iterations are terminated.

The value of the tolerance is chosen so that displacements are deter-

mined accurately and residual nodal forces are also relatively small

at termination of the iterations. The tolerance value used in this

analysis is 10-8. After termination of the iterations, the remaining

vector of residual nodal forces is added to the next load increment.

4.3.4 Failure Criteria. As discussed in Chapter 3, the

hardening parameter k assumes values between 0 and 1. k = 0 indicates

the initiation of material inelasticity and k = 1 means that the

ultimate strength of the material is reached. In this analysis failure

may occur locally and globally. If, at an integration point, ultimate

strength is reached the material is assumed to fail locally at that

point and the stresses are considered as residual ones. This does

not necessarily mean a global failure of the specimen. It may still
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carry load. However, if equilibrium cannot be satisfied after redis-

tribution of stresses, as evidenced by failure to achieve convergence,

the specimen is assumed to collapse.

I



CHAPTER 5

MORTAR-AGGREGATE INTERFACE MODELING

5.1 Introduction

The interface between the coarse aggregate and the mortar

is, in general, the weakest link in concrete. This is most clearly

seen in uniaxial compression. Under this state of stress, failure of

the concrete specimen generally starts with the development of bond

cracks at the interface which propagate through the mortar. Uniaxial

compression tests have shown less bond cracks in high strength con-

crete than in normal strength concrete (see Chapter 2). However,

tests of the concrete model specimens in uniaxial compression exhibit

configuration of cracks parallel to the direction of the applied load

and following a path along the interface.

Thus it may be seen that it is very important to include in the

analysis a model to reproduce the behavior of the interface between

the coarse aggregate and the mortar. In this study this is done by

means of the special interface element shown in Fig. 5.1. The internal

nodes 1, 3 and 5 are attached to an element that represents the aggre-

gate while the external nodes 2, 4 and 6 are attached to an element

that represents the mortar (see Fig. 4.1). The global coordinates x,

y are the same for each pair of adjacent nodes and the element thick-

ness t is set equal to a very small number.

57



58

t 64 1 (x3(, 3 ,y3 ,,

2 -1 --tX -- , N - --2 x -xg- ,y1)
XI

Fig. 5.1 Interface element in global and local systems
of coordinates.

5.2 Derivation of the Stiffness Matrix
of the Interface Element

The interface element is also an isoparametric element and

the derivation of its stiffness matrix follows a procedure similar

to that used in the derivation of the stiffness matrices of the other

elements. The derivation can be summarized as follows:

Step I. The displacements at any point along the edges of the

element are expressed in terms of the nodal displacements:

Uin = N1 uI + N2 u3 + N3 u5  (5.1a)

I
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G NIv i + N2 v3  + N3 v5  (5.1b)in u +

uGt N2 u4  + N3 u6  (5.1c)Uout 1' 4 3U

G Nv 2  + N2 v4  +N 3  v6  (5.1d)Vout 1 ' 4 3 V

where the subscripts in and out indicate displacements of the inside

and of the outside edge of the interface element respectively and

the superscript G identifies displacement components in the global

system of coordinates x, y. The interpolation functions are

1 1N : = r (r - 1)

N2  (1 - r) (1 + r)

1

N3  -T r (1 + r)

Eqs. (5.1) may be organized in matrix form as follows:

UG = N U (5.2)

where,

UG [ Gs' V G uG G t
in in' out , Vout
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T
U = FuP vI , u2 , v2 , . .. , u6 , v6 ]

N = [N2, N2  3

with

Ni  0 0 0

0 Ni  0 0

Ni

0 0 Ni  0

0 0 0 Ni

Step 2. The calculated displacements are transformed to a local

system of coordinates that is tangent and normal to the interface at

the particular point under consideration. This is done using an

appropriated rotation matrix:

uL  cos 6 sin e 0 0 u.G
in in

L -sin e cos e 0 0 .9
V. in
in

UL 0 0 Cos e sine uG
out out

L 0 -sin e cos e VG
out "out

or,
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UL R UG (5.3)

0 is the angle between the x axis and the tangent to the interface

at the point in study. sin e and cos e can be calculated at any point

on the interface as follows:

cos 0 = (a x a r)
A

sin 0 = (D y/a r)A

with

I A = [ (ax/Dr)2 + (ay/ar)2] /2

since

3
x = E Ni  x i

i=1

3
y = E NiY i

i=1

4it is seen that

D X 3 Ni

r =i=1 B r
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y 3 D N.

- r Yi

xi and yi being the global coordinates of the pair of nodes i (e.g.,

pair 1 is the pair of nodes, 1, 2, etc.).

Step 3. With the displacements in local coordinates, the

strains and stresses are found in the tangent and normal directions.

The strains are equal to the difference between corresponding

displacements divided by the element thickness.

-0 I L

t t i

-1 1 L

- 0 - Vin
I Lt t

uLou

L
Yout

or,

: T U (5.4)

E and Y are the strains in the normal and in the tangent directions

respectively. Having calculated the strains, the stresses can be

obtained as
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E 0E

T 0 G

or,

a = D e. (5.5)

o and -r are the stresses in the normal and tangent directions res-

pectively and E and G are the extensional and the shear moduli

of elasticity respectively at the point under consideration. In the

present analysis large values for E and G are used in order to keep

the corresponding displacements of nodes in each pair practically the

same. Values of E and G cannot be arbitrarily large, if ill-

conditioned calculations are to be avoided. An appropriate set of

values of E, G, and t may be obtained by trial and error. In this

study E and G are initially set equal to 1.0 x 106 psi at all inter-

face points and the element thickness t is set equal to 1.0 x 10-10 in.

Step 5. The element stiffness matrix is calculated.

With eqs. (5.2), (5.3) and (5.4) a relationship between

strains and nodal displacements may be derived as follows:

S= T R UG  = T R N U

or

. ..K
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= BU (5.6)

with

B =T R N

and the element stiffness matrix is given by

K f BT DBdv
element
volume

Again the integration is carried out numerically using three

Gaussian integration points. Thus, partitioning

B =[8ll B 2 B ]

BT =[(B 1) T, (B 2),T (B3)]3

with

B i  = T R N i

yields
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, (B T DB (1)D

3 2)T 1 2 T 2 2 3

K =E W t (B 1 BT 2B D (B )TD B (5.7)~i

i13)T D BI (B3) T D B2 (B3) T D B3

where the summation is over the number of integration points and wi

is the weight of integration point i.

5.3 Bond Strength Between the Mortar

and the Coarse Aggregate

The interface may be submitted to a combination of shear and

tensile normal stresses or to a combination of shear and compressive

stresses. Figure 5.2 shows the bond failure envelope in the two

regions. The envelope is defined by the three parameters at, c and 0,

which are respectively the bond tensile strength, the cohesion and

the angle of internal friction. These parameters have been measured

in bond tests between coarse aggregate and normal-strength mortar.

The following range of results have been reported for this type of

material (see Refs. 10, 11 and 12):

at = between 200 psi and 400 psi

c = between 300 psi and 600 psi

0 = between 32 degrees and 39 degrees
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SHEAR- TENSION SHEAR -COMPRESSION

FAFILURE

Fig. 5.2 Bond failure envelope in the - T space.

No information is available in the literature for the bond

strength between coarse aggregate and high-strength mortar; thus,

in this study, different sets of parameters will be used to examine

the importance of the bond strength in the performance of the concrete

model.

1
I B



67

5.4 Implementation of the Bond Properties
in the Analysis

As described in Sec. 5.2, the stiffness matrix of the inter-

face element is derived using initially large values for the exten-

sional modulus E and the shear modulus G at all interface points.

Thus, each pair of nodes has the corresponding nodal displacements

practically equal and, therefore, complete attachment (stick condition)

between the coarse aggregate and the mortar is achieved.

After the calculation of the nodal displacements, the strains

and stresses in the tangent and normal directions at any point within

the interface element can be computed. If the combination of normal

and shear stresses at any point on the interface exceeds the maximum

allowed by the failure envelope in Fig. 5.2, it is assumed that the

bond is damaged at that point and its properties are no longer the

same. The three integration points used in the derivation of the

element stiffness matrix are also used here as the locations to check

if the bond has failed. The procedure can be summarized as follows:

Step 1. After calculating the nodal displacements, the

strains and stresses at each integration point of each interface

element are found in the tangent and normal directions using Eqs.

(5.6) and (5.5).

Step 2. The calculated stresses are checked to see if they

exceed the maximum allowed by the failure envelope in Fig. 5.2. Here

two different modes of bond failure may occur: shear-tension or shear-

compression failure. If a shear-tension failure is reached at an

- --- -. -
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integration point, the values of E and G at that point are set equal

to zero and the normal and the tangent stresses become residual

stresses. If a shear-compression failure is achieved, only the value

of the shear modulus G is set equal to zero at that integration point

and only the tangent stress becomes residual stress.

Step 3. Nodal residual forces from the

residual stresses (see Section 4.3.2) and the stiffness matrices of

the interface elements in which the bond was damaged areobtained,

now using the new values of G and E for each integration point.

Step 4. A new analysis is performed applying the residual

forces and using the new stiffness matrices for the damaged interface

elements. If no more integration points on the surface reach the

failure envelope the analysis is complete. Otherwise, iterations

are continued until no further bond damage occurs.

I
1



CHAPTER 6

ANALYTICAL RESULTS AND COMPARISON

6.1 Introduction

The presentation of the analytical results in this chapter

is divided into two parts. The results shown in the first part were

obtained using all the assumptions and parameters given in the

preceding chapters (with the exception of the bond properties between

the mortar and the aggregate which are discussed in the next section).

The second part of this chapter shows some modifications introduced

in the analysis in order to obtain better agreement with the experi-

mental results,

6.2 Estimation of the Bond Properties

of the Interface

As shown in Section 5.3, the bond properties of the interface

can be defined by three parameters, ot, c and 0, which are, respect-

vely, the bond tensile strength, the cohesion and the angle of

internal friction. Since there appears to be no quantitative infor-

mation on the properties of the bond between high-strength mortar

and aggregates, the values used in this analysis were estimated by

calibration with experimental results.

Figure 6.1 shows a comparison between analytical and experi-

mental results using several different sets of bond parameters in

the case of uniaxial compression. Note the slope discontinuity in

69
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the analytical stress-strain curves corresponding to at = 300 psi,

c = 500 psi, and at = 1000 psi, c = 1000 psi, due to failure in the

interface elements. The value of the tensile bond strength, ct, was

assumed to be equal to the tensile strength of the mortar (about 1000

psi) and the cohesion value was then adjusted in order to get the

same level of strength of the experimental results. A value of 2000

psi was then assigned to the cohesion and the angle of internal

friction was kept equal to 35 degrees. These values were used in all

other load cases.

A map of bond damage is shown in Fig. 6.2 for the case of

uniaxial compression with normal-strength concrete bond properties.

A dashed line means that a shear-compression failure has occurred

at the nearby integration point of the interface element and a con-

tinuous line means that a shear-tension failure has occurred in that

region. This stage of loading corresponds to the points of slope

discontinuity shown in the stress-strain curves in Fig. 6.1.

6.3 Analysis Prediction of the Concrete

Model Behavior

The concrete model behavior, as predicted by the finite element

analysis, is presented in this section. The elastic and plastic

material properties used in the analysis were obtained from uniaxial

compressive tests on cylindrical specimens as described in the prev-

ious chapters.

Four different load cases are studied using the same type of

mortar and coarse aggregate: uniaxial compression (o2/a = 0.0),

-- I
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Anal. results (ot=300 psi, c-500pst, 0-35* )  --

a Anal. results (at.1OOOpsi, c=lOOOpsi, 0=35*) 0 0 0

t- 0 0 0

+ Experimental results

0

o

~-1C,

LO-

UCD

cc'M

-0. 0.10 -0.05 0.00 0.05 0. 10
STRRIN K10 -2

Fig. 6.1 Comparison between analytical and experimental results
using different bond properties for the interface
(2/0 = 0.0)
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- SHER TENSION FAILURE.

-- SMER COPRPESSION FRXLURE.

Fig. 6.2 Map of bond damage for the case of normal-strength concrete
bond properties (02/0, = 0.0- 01= 0.40a )
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equal biaxial compression (a2/Cl = 1.0), and two other biaxial com-

pression cases (a2/01 = 0.50 and 02/01 = 0.20). The load is applied

on the specimen in such a way that all the edge nodes have the same

displacement in the direction of the applied load and it is assumed

that there is no edge restraint in the direction perpendicular to the

direction of the applied load.

6.3.1 Elastic Distributicn of Stresses. A graphical repre-

sentation of the principal stresses at the integration points for

the four load cases is shown in Figs. 6.3 through 6.10. Each stress

is represented by an arrow. The direction of the arrow coincides with

the direction of the principal stress and the arrow length is pro-

j portional to the magnitude of the principal stress. A compressive

principal stress is represented by an arrow pointing towards the cor-

responding integration point whereas a tensile principal stress is

represented by an arrow pointing in the opposite direction. Two

figures (with different scales) are used to represent the two principal

stresses for each load case. The first figure contains the smaller

(in absolute value) principal stress and the second figure contains

the larger one. The externally applied stress, 01, is equal to

1,000 psi. The absolute value of the stresses at the integrationI
points without arrows in Fig. 6.3 is less than 38 psi.

Note that tensile stresses have occurred only in the case of

uniaxial compression. With the exception of the case of equal biaxial

compression (a2/01 = 1.0), a slight concentration of stresses may be

observed in the regions between two circles of aggregate and the
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Scale: Legend:

Scompress ion

~.tension
0 300 600

Fig. 6.3 Graphical representation of the smaller principal stress at
the integration points (a 2/al 0.0).



Scale: Legend:

.... compression

I V* tension
0 2000 4M0

Fig. 6.4 Graphical representation of the lar er principal stress at
the integration points (021/a1 0.01.
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Fig. 6.6 Graphical representation of the larger principal stress at
the integration points ( 2/01 = 0.20).



78

IT

X11, 5T 'T Tt TIT T x T I
t 1 4 1 r I T

* g Sale: egend
-4. ~1P~SI~T

T T T I T9

T T00 200 

T* 
Tes

Fig 6.Trp~a ersnaino th Tmle prnia stesa

Te inerto InTs (Ta 0.0)



79

Scle SOO psi

---- ~ compression--

0~~~-- 200 00 -. tbs

Fig. ~6- 6.8 Grb~a ersnaino helre rnia tesa

the itegraion oints(a~f1 1 = .50)



80

I I

Scale:Leqal.

-4 compression

02000 40 4- tension

Fig. 6.9 Graphical representation of the smaller principal stress
at the integration points (a2/cr1 =1.0).
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021000 psi

Scale (psi): Legend:

-4. compression

0 2000 4M0 4- tension

Fig. 6.10 Graphical representation of the larger principal stress
at the integration points (02/01 = 1.0).
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directions of the principal stresses are almost coincident with the

directions of the applied loads. The equal biaxial loading case

shows a more uniform distribution of stress in magnitude. In this

case the directions of the principal stresses are approximately

normal and tangential to the interface which means that, practically,

the interface is subjected to no shear stresses.

6.3.2 Evolution of the Damage in the Concrete Model During

Loading. As described in Chapter 3, the hardening parameter k was

chosen to vary between 0 and 1. These values correspond, respec-

tively, to the initiation of inelasticity and ultimate strength of

the material. Thus, the magnitude of k may be used as an indicator

of the proximity to failure or the degree of damage at a point in

the specimen. Figures 6.11 through 6.22 show a representation of the

magnitude of k at the mortar elements integration points for the

four load cases and at diffe,._t load stages. A circle of radius

proportional to the value of k is used in the representation. For

the values of k less than 0.125 the circles are not shown.

With the exception of the equal biaxial load case (o2 1'=

1.0), it may be observed that the inelasticity of the material starts

and develops with more intensity in the regions between two circles

of aggregate in the direction perpendicular to a1. Note that in the

case of uniaxial compression no integration point reaches failure at

ultimate strength of the specimen. This agrees with the fact that

the bond strength is the most important factor influencing the

ultimate strength of the specimen in this load case. The case of
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C)k-1.0

k-0.125

Fig. 6.11 Degree of damage in the specimen at 65 percent of the
analytical ultimate strength (a2/01 =0.0).
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Fig. 6.13 Degree of damage in the specimen at the analytical
ultimate strength (02/01 =0.0).
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C k-1.O
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Fig. 6.14 Degree of damage in the specimen at 57 percent of the
analytical ultimate strength (02/01 = 0.20).
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k aO.125

Fig. 6.15 Degree of damage in the specimen at 78 percent of the
analytical ultimate strength (02/01 0.20).
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Fig. 6.16 Degree of damage in the specimen at the analytical
ultimate strength (a 2/a 1 = 0.20).
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(O k-1.0

k a 0.125

Fig. 6.17 Degree of damage in the specimen at 48 percent of the
analytical ultimate strength (0 2/a 1 - 0.50).
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k .

k..125

Fig. 6.18 Degree of damage in the specimen at 74 percent of the
analytical ultimate strength (0 2/a 1 =0.50).
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Fig. 6.20 Degree of damage in the specimen at 52 percent of the
analytical ultimate strength (G02/01 ' 1.0).
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Fig. 6.21 Degree of damage in the specimen at 84 percent of the
analytical ultimate strength (02101 = 1.0).
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equal biaxial compression shows a more uniform distribution of

plasticity throughout the specimen.

6.3.3 Comparison between Analytical and Experimental Results.

Figures 6.23 through 6.26 show the stress-strain curves for the four

load cases obtained from experiments and the analysis. The average

strains in the directions 1 and 2 were obtained by dividing the dis-

placements of nodes 10 and 77 respectively (Fig. 4.1) by the dis-

tance from these nodes to node 1 (1.875 in.). Nodes 10 and 77 cor-

respond to the points at which average strains were obtained in the

experiments.

For all the load cases, the a-alytical results show less

stiffness than the experimental ones even at low levels of load

for which the specimen is still elastic.

Bond failure for the load cases 02/0 = 0.0 and 02/a1 = 0.20

was observed in the analysis just prior to failure of the specimen.

For the load cases 02/01 = 0.50 and 02/a I = 1.0 the interface

remained undamaged up to failure of the specimen and the analytical

results showed higher ultimate -trength and ultimate strains than the

experimental ones. The analytical results in Figs. 6.23 to 6.26 were

obtained using the plastic shear modulus H as a function of the

hardening parameter k and the hydrostatic stress a (see Table 3.3).

Figures 6.27 through 6.30 show the analytical results obtained

with the plastic shear modulus H as a function of the hardening para-

meter k only. With this change in the plastic properties of the

mortar, the load case 02/01 = 0.20 did not show a bond failure at the
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interface and its analytical ultimate strength was increased. The

load case a2/ai = 0.50 showed a slight decrease in strength and

less plastic deformation may be observed in all load cases.

The difference in stiffness between the analytical and the

experimental results is attributed to the boundary conditions at the

edges of the specimen in the experiments. The next part of this

chapter will present analytical results for specimens with edge

restraints imposed in the direction perpendicular to the direction

of the applied load.

6.4 Analysis of Constrained Specimens

The question as to what the boundary conditions are at the

edges of the specimen is not easily answered because no information

is available about the degree and distribution of restraint provided

by the loading device. If one tries, at what would be considered as

extreme boundary conditions, to set equal to zero the edge displace-

ments in the direction perpendicular to the direction of the applied

load, a singularity in the displacement field is obtained at the

corner. From one side the corner must have the same displacement as

the other edge nodes and from the other side this same displacement

is set equal to zero. If the displacements of the corner node are

not prescribed equal to zero, a concentration of strains and therefore

stresses is obtained in the elements in the neighborhood of the

corner and premature failure of the specimen is predicted.

Any reasonable distribution of edge restraint is best justi-

fied if good agreement with the experimental results is obtained.
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The concrete model was analyzed with rectangular elements attached

to the boundary mortar elements in an attempt to simulate the

loading device (Fig. 6.31). The elastic properties of these ele-

ments were set equal to the elastic properties of typical steel

(E = 2.90 x 107 psi, v = 0.30) and the dimension of the element in

the direction of the applied load was set equal to the dimension of

the loading device (0.75 in.). No relative displacement was

allowed between the mortar and the steel elements and the load was

applied at the edge nodes of the steel elements. The displacements

of the edge nodes of the steel elements in the direction perpendicu-

lar to the direction of the applied load were set equal to zero.

The stress-strain curves obtained with these boundary con-

ditions and the stress-strain curves obtained with no edge restraint

of the concrete model are compared with the experimental results

in Figs. 6.32 through 6.35. In uniaxial compression, the edge con-

dition has negligible influence on the analytical results. The two

curves are almost identical. In the other three load cases, the

experimental results lie in between the two sets of analytical results.

Obviously, a certain degree of relative displacement has occurred

between the specimen and the loading device in the experiment.

Another way to impose edge restraint on the specimen was

examined using the three-node bar element shown in Fig. 6.36. Such

elements were attached to the boundary mortar elements in order to

decrease the edge displacements in the direction perpendicular to

the direction of the applied load. The stiffness matrix of this
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Y-- _________ P-'

Fig. 6.36 Three-node bar element used in the constrained analysis
of the specimen.

element was obtained numerically using three Gaussian integration

points. The element axial stiffness was assumed to vary )inearly

along the element length. Thus, during the integration of the element

stiffness matrix, each integration point had a different value of the

stiffness assigned. In order to avoid the high concentration of

strains and stresses in the corner elements, this axial stiffness was

distributed linearly from zero at the corner node (node 100 in Fig.

4.1) to a maximum value at the middle of a side of the specimen

(nodes 13 and 94 in Fig. 4.1). This maximum value of axial stiff-

ness was calibrated with the experimental results in equal biaxial

compression in order to have the same initial elastic stiffness in

the stress-strain curve. A value equal to 4.2 x 1071b/in was obtained,

then used for all the load cases. The analytical results obtained

under these assumptions regarding the boundary conditions are compared

L __ _,_. ...
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to the experimental results in Figs. 6.37 through 6.40. A better

agreement in stiffness and ultimate strength may be observed.

A representation of the magnitude of the hardening parameter

k at different levels of load for the four load cases is shown in

Figs. 6.41 through 6.52 for the above described boundary conditions.

With the exception of the uniaxial load case, the inelasticity starts

and develops with more intensity at the corner of the specimen. The

failure of the specimen is seen to be premature because of the edge

conditions.

6.5 Analysis Shortcomings

The linear finite element analysis of the concrete modpl is

expected to predict stiffer behavior than the exact solution due to

the discretization. The error, however, is not large for the dis-

cretization used in this analysis and the results are accurate enough

as demonstrated in Section 4.2.5. This observation establishes beyond

any doubt that the specimens were constrained by the heads of the

loading device in the experiments.

The accuracy of the nonlinear analysis is mainly influenced

by the accuracy of the constitutive model used forthemortar. The

model has proved to be accurate for normal-strength concrete under

biaxial states of stress (Ref. 1) but has not yet been tested for

high-strength mortar under multiaxial states of stress since no

experimental data are available.
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Fig. 6.41 Degree of damage in the specimen at 65 percent of the
analytical ultimate strength with the edge stiffening
elements attached (02/o I = 0.0).
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analytical ultimate strength with the edge stiffening
elements attached (o2/a I = 0.0).
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ultimate strength with the edge stiffening elements
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Fig. 6.45 Degree of damage in the specimen at 79 percent of the
analytical ultimate strength with the edge stiffening
elements attached (02/0= 0.20).
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ultimate strength with the edge stiffening elements
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Fig. 6.47 Degree of damage in the specimen at 53 percent of the
analytical ultimate strength with the edge stiffening
elements attached (c21c= 0.50).
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Fig. 6.51 Degree of damage in the specimen at 74 percent of the
analytical ultimate strength with the edge stiffening
elements attached (Ya 1.0).
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The bond properties used for the mortar-aggregate interface

modeling may not be accurate and experimental studies of the bond

between the coarse aggregate and high-strength mortar are yet to be

performed. An increase in the number of interface points used to

check for bond failure may also yield more accurate modeling of the

interface.

The differences in stiffner% between the analytical and the

experimental results in uniaxial compression cannot be attributed

to the restraints imposed on the edge of the specimen only. Other

factors may be responsible for the disagreement such as difference

between the elastic properties of the component materials as obtained

from tests on cylindrical specimens and their actual values in the

concrete model as well as possible eccentricities in the loading

device.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

7.1 Summary

This present work describes a finite element analysis of a

high-strength concrete model under short-term monotonic biaxial

compressive loading. The concrete model consists of a square mortar

plate with nine coarse aggregate circular inclusions (Fig. 2.1).

The analysis takes into account the nonlinear behavior of

the mortar using a constitutive model proposed in Ref. 1. The

significance of the bond between the coarse aggregate and the mortar

is also studied using an interface element developed in this work.

The analytical results are then compared with experimental ones.

7.2 Conclusions

The following conclusions may be drawn from this work:

1. The strength of the bond between the coarse aggregate

and the mortar appears to be the most significant factor influencing

the strength of the concrete model in uniaxial compression.

2. Except for low values of the stress ratio 02/01 (e.g.,

21/31 = 0.20), the analysis predicts that the bond between the

coarse aggregate and the mortar remains intact up to ultimate strength

of the concrete and it is failure in the mortar matrix that leads to

failure of the model.
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3. Mild stress concentrations were observed in all load

cases. Although significant stress concentrations certainly appear

around aggregates in high-strength concrete, this phenomenon,

apparently, is not captured in the concrete model (circular aggre-

gates).

4. The damage in the concrete starts and develops most

conspicuously in the regions between two aggregates in the direction

perpendicular to the direction of application of the largest stress.

5. The boundary conditions at the edges of the specimen

have negligible influence on the strength and stiffness of the con-

crete model subjected to uniaxial compression.

6. The boundary conditions at the edges of the specimen

most significantly affect the strength and stiffness of the concrete

model in biaxial compression.
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